
www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 26 – Python and emacs Fun

www.umbc.edu

Today’s Objectives

• Review the important points of classes

– Classes will be on the exam

• Learn some cool Python stuff

– Importing libraries to do tasks for you

– (Pseudo) random numbers

• Emacs shortcuts!

2

www.umbc.edu3

Review of Classes

www.umbc.edu

In-Class Exercise

• Labelling the parts of a class!

• Partial list of answers:

– Class name

– Constructor

– Method

– Attribute

– Object the method is called on

– Keyword to create class
4

www.umbc.edu

Built-In Functions

• Classes have two important built-in functions

– Have double underscores on either side of name

__init__

– Constructor for the class

– Initializes and creates attributes

__str__

– Creates the string representation of the object

– Used when we call print() with an instance

5

www.umbc.edu

Abstraction and Encapsulation

• All programming languages provide some
form of abstraction

– Hide the details of implementation from the user

– All the user needs to know is the name and basics

• Encapsulation is a form of information
hiding and abstraction used in classes

– Data and functions that act on that data are
located in the same place (inside a class)

6

www.umbc.edu

The self Variable

• The self variable is how we refer to the
current instance of the class

– In __init__, self refers to the object
that is currently being created

– In other methods, self refers to the
instance the method was called on

7

def speak(self):

print("\"" + str(self.species) + " noise\"")

www.umbc.edu

Inheritance

• Inheritance is when one class is based upon
another class (child inherits from parent)

• The child class inherits most or all of its
features from the parent class it is based on

– Inherits both methods and attributes

• Child class can extend and override the
methods from the parent class

– What do each of these mean?
8

www.umbc.edu9

Python Fun!

www.umbc.edu

Importing Modules

• A module is a Python file that contains
function definitions and other statements

• To import modules, use this command:

import moduleName

• This imports the entire module of that name

– Every single thing in the file is now available

– This includes functions, data types, constants, etc.

10

www.umbc.edu

Calendar Module Example
import calendar

exCal = calendar.TextCalendar()

printCal = exCal.formatmonth(2017, 5)

print(printCal)

11

May 2017

Mo Tu We Th Fr Sa Su

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31

www.umbc.edu

import

• To use the things we’ve imported this way, we
need to append the filename and a period to
the front of its name (“moduleName.”)

• To access a function called function:

moduleName.function()

12

www.umbc.edu13

“Random” Numbers

www.umbc.edu

Random Numbers

• Random numbers are useful for many things

– Like what?

– Cryptography

– Games of chance

– Procedural generation

• Minecraft levels, snowflakes in Frozen

• Random numbers generated by computers
can only be pseudo random

14

www.umbc.edu

Pseudo Randomness

• “Anyone who considers arithmetical methods
of producing random digits is, of course, in a
state of sin.” – John von Neumann

• Pseudorandom appears to be random, but isn’t

– Mathematically generated, so it can’t be

– Called a Random Number Generator (RNG)

15

www.umbc.edu

Seeding for Randomness

• The RNG isn’t truly random

– The computer uses a “seed” in an
attempt to be as random as possible

• By default, the seed is the system time

– Changes every time the program is run

• We can set our own seed

– Use the random.seed() function

16

www.umbc.edu

Seeding for Randomness

• Same seed means same “random” numbers

– Good for testing, allow identical runs

random.seed(7)

random.seed("hello")

• 7 always gives .32, .15, .65, .07

• “hello” always gives .35, .66, .54, .13

17

www.umbc.edu

How Seeds Work

• “Resets” the random number generator each
time it is seeded

• Should only seed once per program

• Seeding and calling gives the same number
>>> random.seed(3)

>>> random.random() 0.23796462709189137

>>> random.seed(3)

>>> random.random() 0.23796462709189137

18

www.umbc.edu

Generating Random Floats

• random.random()

• Returns a random float from 0.0 up to
(but not including) 1.0

>>> random.seed(201)

>>> random.random() 0.06710225875940379

>>> random.random() 0.3255995543326774

>>> random.random() 0.0036753697681032316

>>> random.random() 0.28279809896785435

19

www.umbc.edu

Generating Random Integers

• random.randrange()

• Works the same as normal range()

– Start, stop, and step

>>> random.seed("dog")

>>> random.randrange(2, 21, 4) 14

>>> random.randrange(2, 21, 4) 6

>>> random.randrange(2, 21, 4) 10

>>> random.randrange(2, 21, 4) 10

>>> random.randrange(6) 5

>>> random.randrange(6) 4

20

www.umbc.edu

Generating Random Options

• random.choice()

• Takes in a list, returns one of the options at
random

>>> dogs = ["Yorkie", "Xolo", "Westie",

"Vizsla"]

>>> random.seed("yay, summer!")

>>> random.choice(dogs) 'Yorkie'

>>> random.choice(dogs) 'Xolo'

>>> random.choice(dogs) 'Yorkie'

>>> random.choice(dogs) 'Westie'

21

www.umbc.edu22

GL and emacs Shortcuts

www.umbc.edu

Announcements

• Final is Friday, May 19th from 6 to 8 PM

– Start studying now!

– Review worksheet won’t come out until Saturday

• Final exam locations:

– Gibson (2, 3, 4, 5, 15, 16, 18) in ENGR 027

– Wilson (9, 10, 11, 12, 20, 21, 22, 23) in MEYR 030

• Project 3 due on May 12th @ 8:59:59 PM
23

www.umbc.edu24

What do you want to learn?

www.umbc.edu

Common Tasks

• Moving around the file

• Copying, cutting, and pasting

• Searching and replacing

• Advanced commands

– (Un)comment region

• “Meta” (escape)

• GL vs bash

25

